
CSCI 210: Computer Architecture
Lecture 8: Computer Representation of MIPS

Instructions

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

Announcements

• Problem Set 2 due Friday

• Lab 1 available now

CS History: ENIAC

U.S. Army photo of ENIAC

• Electronic Numerical Integrator
And Computer

• First programmable, electronic,
general-purpose computer

• Created by the US Army in 1945

• Designed to compute ballistic
tables during WWII

• Originally didn’t have storage

• Decimal, not binary!

CS History: ENIAC
• Programmers were Kay McNulty, Jean

Bartok, Betty Snyder, Marlyn Meltzer,
Fran Bilas, and Ruth Lichterman.

• Selected from a group of 200 women
employed hand calculating equations
for the army

• Programmed by connecting
components with cables and setting
switches

• Kay McNulty developed the use of
subroutines

• Betty Snyder and Jean Bartok went on
to help develop the first commercial
computers

U.S. Army photo

Recall from last class: Addition and Subtraction

• Positive and negative numbers are handled in the same way.

• The carry out from the most significant bit is ignored.

• To perform the subtraction A − B, compute A + (two's
complement of B)

10012 + 10112 = ?2

A. 0010

B. 0100

C. 1000

D. 1111

E. None of the above

Overflow

• Overflow occurs when an addition or subtraction results in a
value which cannot be represented using the number of bits
available.

• In that case, the algorithms we have been using produce
incorrect results.

A. -2147483648

B. 0

C. 2147483647

D. 2147483648

E. This will cause an error

What will this java code print?

public static void main(String args[]) {
int x = 2147483647;
x = x + 1;
System.out.println(x);

}

Handling Overflow

• Hardware can detect when overflow occurs

• Software may or may not check for overflow

– Java guarantees two’s complement behavior!

– In C, overflow is “undefined behavior” meaning, it can do anything

– In Rust, overflow is checked in debug builds but not optimized builds!

How To Detect Overflow

• On an addition, an overflow occurs if and only if the carry into
the sign bit differs from the carry out from the sign bit.

• Overflow occurs if adding two negative numbers produces a
positive result or if adding two positive numbers produces a
negative result.

Will 011111112 + 000001012 result in overflow
when treated as 8-bit signed integers?

A. Yes

B. No

C. It depends

Unsigned Numbers

• Some types of numbers, such as memory addresses, will never
be negative

• Some programming languages reflect this with types such as
“unsigned int”, which only hold positive numbers
– uint32_t in C99

– u32 in Rust

– Java only has signed types (except for char which is unsigned 16-bit)

• In an unsigned byte, values will range from 0 to 255

• In a signed byte, values will range from -128 to 127

In MIPS

• add, sub, addi instructions cause exceptions on (signed)
overflow

• addu, subu, addiu instructions do not

• Rationale: In C, unsigned types never cause overflow, they’re
defined to wrap (produce a value modulo 2n)

• In practice: Since overflow is undefined behavior, it is assumed
to never happen so compilers always use addu/subu/addiu

Questions on Overflow?

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Two Key Principles of Machine Design
1. Instructions are represented as numbers and, as such, are indistinguishable

from data

2. Programs are stored in alterable memory (that can be read or written to) just
like data

Stored-program concept

• Programs can be shipped as files of binary
numbers – binary compatibility

• Computers can inherit ready-made software
provided they are compatible with an existing
ISA and OS – leads industry to align around a
small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll data

Source code in C
for Acct prg

Memory

What happens if someone writes new machine code
in the memory where your program is stored,

overwriting your program?

A. The program will crash.

B. The old instructions will run.

C. The new instructions will run.

D. None of the above

Recall: Instruction Set Architecture

• Definition of how to access the hardware from software

• Supported instructions, registers, etc . . .

Key ISA decisions

• operations
▪ how many?

▪ which ones

• operands
▪ how many?

▪ location

▪ types

• instruction format
▪ size

▪ how many formats?

y = x + b

operation

source operands

destination operand

how does the computer know what
0001 0100 1101 1111
means?

add r1, r2, r5

RISC versus CISC (Historically)

• Complex Instruction Set Computing
– Larger instruction set

– More complicated instructions built into hardware

– Variable number of clock cycles per instruction

• Reduced Instruction Set Computing
– Small, highly optimized set of instructions

– Memory accesses are specific instructions

– One instruction per clock cycle (only the very first RISCs!)

A = A*B

RISC

lw $t0, 0(A)

lw $t1, 0(B)

mul $s1, $t0, $t1

sw $s1, 0(A)

CISC

mul B, A

Which of these is faster?

RISC

lw $t0, 0(A)

lw $t1, 0(B)

mul $s1, $t0, $t1

sw $s1, 0(A)

CISC

mul B, A

RISC vs CISC

RISC

• More work for
compiler/assembly
programmer

• More RAM used to store
instructions

• Less complex hardware

CISC

• Less work for
compiler/assembly
programmer

• Fewer instructions to store

• More complex hardware

So . . . Which System “Won”?

• Most processors are RISC

• BUT the x86 (Intel) is CISC

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear

– Some RISC instruction sets have more instructions than some CISC
sets

The computer figures out what format an
instruction is from

A. Codes embedded in the instruction itself.

B. A special register that is loaded with the instruction.

C. It tries each format and sees which one forms a valid
instruction.

D. None of the above

Instruction Formats
What does each bit

mean?

• Having many different
instruction formats...

– complicates decoding

– uses more instruction
bits (to specify the
format)

Representing Instructions

• MIPS instructions

– Encoded as 32-bit instruction words

– Small number of formats encoding operation code (opcode), register numbers, …

– Regularity!

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type

I-type

J-type

Your architecture supports 16 instructions and 16
registers (r0–r15). You have fixed width instructions
which are 16 bits. How many register operands can
you specify (explicitly) in an add instruction?

A. ≤ 1 operand

B. ≤ 2 operands

C. ≤ 3 operands

D. ≤ 4 operands

E. None of the above

Hint: Remember you need to
specify which instruction it is,
and all the registers

MIPS Instruction Formats

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type I-type

A addi sw

B addi sub

C add sw

D add sub

E None of the above

R-type

I-type

J-type

Which row contains correct examples of instructions with
the given types?

• MIPS fields are given names to make them
easier to refer to

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

MIPS Arithmetic Instructions Format

sub $t0, $s1, $s2

t0 = s1 – s2

0 17 18 8 0 0x22
opcode rs rt rd sa funct

R-format Example

add $t0, $s1, $s2

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Reading

• Next lecture: Bitwise Operations

– Section 2.7

• Problem Set 2 due Friday

• Lab 1 due Monday

	Slide 1: CSCI 210: Computer Architecture Lecture 8: Computer Representation of MIPS Instructions
	Slide 2: Announcements
	Slide 3: CS History: ENIAC
	Slide 4: CS History: ENIAC
	Slide 5: Recall from last class: Addition and Subtraction
	Slide 6: 10012 + 10112 = ?2
	Slide 7: Overflow
	Slide 8: What will this java code print?
	Slide 9: Handling Overflow
	Slide 10: How To Detect Overflow
	Slide 11: Will 011111112 + 000001012 result in overflow when treated as 8-bit signed integers?
	Slide 12: Unsigned Numbers
	Slide 13: In MIPS
	Slide 14: Questions on Overflow?
	Slide 15: How to Speak Computer
	Slide 16: Two Key Principles of Machine Design
	Slide 17: What happens if someone writes new machine code in the memory where your program is stored, overwriting your program?
	Slide 18: Recall: Instruction Set Architecture
	Slide 19: Key ISA decisions
	Slide 20: RISC versus CISC (Historically)
	Slide 21: A = A*B
	Slide 22: Which of these is faster?
	Slide 23: RISC vs CISC
	Slide 24: So . . . Which System “Won”?
	Slide 25: The computer figures out what format an instruction is from
	Slide 26: Instruction Formats What does each bit mean?
	Slide 27: Representing Instructions
	Slide 28: Your architecture supports 16 instructions and 16 registers (r0–r15). You have fixed width instructions which are 16 bits. How many register operands can you specify (explicitly) in an add instruction?
	Slide 29: MIPS Instruction Formats
	Slide 30: MIPS Instruction Fields
	Slide 31: MIPS Arithmetic Instructions Format
	Slide 32: R-format Example
	Slide 41: Reading

